Two-person zero-sum risk-sensitive stochastic games with incomplete reward information on one side

Fang Chen
co-operate with: Xianping Guo

July 2023

Outline

(1) Introduction and game model
(2) The value and a new Shapley equation
(3) Optimal policy for player 1
(4) Optimal policy for player 2
(5) An example

Risk-sensitive criterion

- The risk preferences of players are taken into consideration by the expectation of the exponential utility of the total reward.
- References on discrete-time stochastic games (DTSGs):

1) Basu, A. and Ghosh, M. K. (2014) Zero-sum risk-sensitive stochastic games on a countable state space. Stochastic Process. Appl.
2) Bäuerle, N. and Rieder, U. (2017) Zero-sum risk-sensitive stochastic games. Stochastic Process. Appl.
3) Ghosh, M. K., Golui, S., Pal, C. and Pradhan, S. (2023) Discrete-time zero-sum games for Markov chains with risk-sensitive average cost criterion. Stochastic Process. Appl.

complete information VS incomplete information

- The existing literature on risk-sensitive DTSGs considers complete information games.
- Complete information game: players do not have private information, which is known only to themselves and not to other players.
- Incomplete information games: players may have private information.

Game Model

A risk-sensitive stochastic game with incomplete reward information:

$$
G(\theta, r, p):=\{\theta, E, A, B, q(y \mid x, a, b), K, p, r(k, x, a, b)\}
$$

- $\theta \in(0, \infty)$: risk-sensitive parameter;
- E : finite state space;
- A / B : finite action space for player $1 /$ player 2 ;
- $q(y \mid x, a, b)$: the transition probability to the state y from the state x under the action pair (a, b);
- K : finite reward type set used to describe the reward information;
- $p=\left\{p_{k}, k \in K\right\} \in \mathcal{P}(K)$: law of the reward types;
- $r(k, x, a, b)$: reward function; assume that r is nonnegative.

The evolution of the game $G(\theta, r, p)$

- Initially, k is chosen on K with the probability p_{k}. It is informed only to player 1.
- Both players observe the initial state x_{0}. Player 1 chooses a_{0} according to the information k and x_{0}, whereas player 2 chooses b_{0} only according to x_{0}.
- The system jumps to state x_{1} with probability $q\left(x_{1} \mid x_{0}, a_{0}, b_{0}\right)$.
- At the stage n, player 1 chooses a_{n} according to k and the history h_{n}, whereas player 2 chooses b_{n} according only to h_{n}.
- Finally, given a discount factor $\beta \in(0,1)$, player 1 receives the reward $\sum_{n=0}^{\infty} \beta^{n} r\left(k, x_{n}, a_{n}, b_{n}\right)$, which is paid by player 2.
$\boldsymbol{\uparrow}$ incomplete information on one side: only player 1 has private information

Policy

Definition 1

(a) A randomized policy for player 1 is a sequence $\pi=\left\{\pi_{n}^{(k)}, k \in K, n \geq 0\right\}$ of stochastic kernels $\pi_{n}^{(k)}$ on A given H_{n}, where $H_{n}:=E \times(A \times B \times E)^{n}$.
(b) A randomized policy for player 2 is a sequence $\sigma=\left\{\sigma_{n}, n \geq 0\right\}$ of stochastic kernels σ_{n} on B given H_{n}.
(c) Denote by Π_{i} the set of all randomized policies a for player $i(i=1,2)$

For any $\pi=\left\{\pi_{n}^{(k)}, k \in K, n \geq 0\right\}$ and $h_{n} \in H_{n}$, denote

$$
\pi_{n}\left(\cdot \mid h_{n}\right):=\left\{\pi_{n}^{(k)}\left(\cdot \mid h_{n}\right), k \in K\right\} .
$$

Clearly, $\pi_{n}\left(\cdot \mid h_{n}\right) \in \mathcal{P}(A \mid K)$.

Risk-sensitive reward

Given $(\theta, r, p, x) \in(0, \infty) \times \mathcal{C} \times \mathcal{P}(K) \times E$, the expected risk-sensitive reward for player 1 under the policy pair $(\pi, \sigma) \in \Pi_{1} \times \Pi_{2}$ is

$$
\begin{equation*}
V(\theta, r, p, x, \pi, \sigma):=\mathbb{E}_{p, x}^{\pi, \sigma}\left[e^{\theta \sum_{n=0}^{\infty} \beta^{n} r\left(\wedge, X_{n}, A_{n}, B_{n}\right)}\right] \tag{1}
\end{equation*}
$$

- \mathcal{C} : the family of all non-negative functions on $K \times E \times A \times B$
- $\mathbb{E}_{p, x}^{\pi, \sigma}$ is the expectation with respect to $\mathbb{P}_{p, x}^{\pi, \sigma}$ on

$$
(\Omega, \mathcal{F}):=\left(K \times(E \times A \times B)^{\infty}, \mathcal{B}\left(K \times(E \times A \times B)^{\infty}\right)\right)
$$

- Λ, X_{n}, A_{n}, and B_{n} are random variables on (Ω, \mathcal{F}) defined by

$$
\Lambda(\omega):=k, \quad X_{n}(\omega):=x_{n}, \quad A_{n}(\omega):=a_{n}, \quad B_{n}(\omega):=b_{n},
$$

for each $n \geq 0$ and $\omega=\left(k, x_{0}, a_{0}, b_{0}, \ldots, x_{n}, a_{n}, b_{n}, \ldots\right) \in \Omega$.
$\uparrow \Lambda$ is the reward information variable.

Value function

- Upper value function:

$$
\bar{V}(\theta, r, p, x):=\inf _{\sigma \in \Pi_{2}} \sup _{\pi \in \Pi_{1}} V(\theta, r, p, x, \pi, \sigma)
$$

- Lower value function:

$$
\underline{V}(\theta, r, p, x):=\sup _{\pi \in \Pi_{1}} \inf _{\sigma \in \Pi_{2}} V(\theta, r, p, x, \pi, \sigma)
$$

- Value function: for $(\theta, r, p) \in(0, \infty) \times \mathcal{C} \times \mathcal{P}(K)$, if

$$
\underline{V}(\theta, r, p, x)=\bar{V}(\theta, r, p, x) \quad \forall x \in E
$$

the common function is called the value function of $G(\theta, r, p)$ and is denoted by $V^{*}(\theta, r, p, x)$.

Optimal policies

Definition 2

(a) A policy $\pi^{*} \in \Pi_{1}$ for player 1 is called optimal in $G(\theta, r, p)$ if

$$
\inf _{\sigma \in \Pi_{2}} V\left(\theta, r, p, x, \pi^{*}, \sigma\right)=\underline{V}(\theta, r, p, x) \quad \forall x \in E
$$

(b) Symmetrically, a policy $\sigma^{*} \in \Pi_{2}$ for player 2 is called optimal in $G(\theta, r, p)$ if

$$
\sup V\left(\theta, r, p, x, \pi, \sigma^{*}\right)=\bar{V}(\theta, r, p, x) \quad \forall x \in E
$$

© Our goals: proving the existence of the value function and constructing optimal policies for players.

In complete information games

- Complete information games: the existence of the value function and optimal policies are proved at the same time by the Shapley equation

$$
\begin{equation*}
u(\theta, x)=\sup _{\mu \in \mathcal{P}(A)} \inf _{\nu \in \mathcal{P}(B)} \sum_{a, b, y} \mu(a) \nu(b) q(y \mid x, a, b) e^{\theta r(x, a, b)} u(\theta \beta, y) \tag{2}
\end{equation*}
$$

- the property (P1) is key :

$$
\begin{aligned}
(P 1): \quad & \mathbb{E}\left[e^{\theta \sum_{n=0}^{\infty} \beta^{n} r\left(X_{n}, A_{n}, B_{n}\right)} \mid X_{0}, A_{0}, B_{0}\right] \\
= & e^{\theta r\left(X_{0}, A_{0}, B_{0}\right)} \mathbb{E}\left[e^{\theta \sum_{n=1}^{\infty} \beta^{n} r\left(X_{n}, A_{n}, B_{n}\right)} \mid X_{0}, A_{0}, B_{0}\right] .
\end{aligned}
$$

- (P1) does not hold in incomplete information case; (2) is not suitable:

$$
\begin{aligned}
& \mathbb{E}\left[e^{\theta \sum_{n=0}^{\infty} \beta^{n} r\left(\Lambda, X_{n}, A_{n}, B_{n}\right)} \mid X_{0}, A_{0}, B_{0}\right] \\
\not \equiv & e^{\theta r\left(\Lambda, X_{0}, A_{0}, B_{0}\right)} \mathbb{E}\left[e^{\theta \sum_{n=1}^{\infty} \beta^{n} r\left(\Lambda, X_{n}, A_{n}, B_{n}\right)} \mid X_{0}, A_{0}, B_{0}\right]
\end{aligned}
$$

Scheme for solving incomplete information games

- Establish the existence of the value function
- Derive a new Shapley equation by introducing a functional of rewards
- Show that the value function solves the Shapley equation
- Construct an optimal policy for player 1
- Construct an optimal policy for player 2

The value function

Theorem 1 (The existence of the value function)

(a) For each $N \geq 0$, and $(\theta, r, p, x) \in(0, \infty) \times \mathcal{C} \times \mathcal{P}(K) \times E$.

$$
\begin{aligned}
& \inf _{\sigma \in \Pi_{2}} \sup _{\pi \in \Pi_{1}} \mathbb{E}_{p, x}^{\pi, \sigma}\left[e^{\theta \sum_{n=0}^{N} \beta^{n} r\left(\Lambda, X_{n}, A_{n}, B_{n}\right)}\right] \\
= & \sup _{\pi \in \Pi_{1}} \inf _{\sigma \in \Pi_{2}} \mathbb{E}_{p, x}^{\pi, \sigma}\left[e^{\theta \sum_{n=0}^{N} \beta^{n} r\left(\Lambda, X_{n}, A_{n}, B_{n}\right)}\right] \\
= & : V_{N}^{*}(\theta, r, p, x) .
\end{aligned}
$$

(b) The value function V^{*} exists and satisfies

$$
V^{*}=\lim _{N \rightarrow \infty} V_{N}^{*}
$$

Key points of proof:

- The finiteness assumption ensures that the N -horizon game can be transformed into a static game where an action for player 1 is

$$
d_{1}: K \times \cup_{n=0}^{N} H_{n} \rightarrow A,
$$

and an action for player 2 is $d_{2}: \cup_{n=0}^{N} H_{n} \rightarrow B$. Both action spaces in the static game are finite, thus (a) holds.

- The existence of the value function directly follows from (a) and

$$
0 \leq V(\theta, p, r, x, \pi, \sigma)-V_{N}(\theta, r, p, x, \pi, \sigma) \leq e^{\frac{\theta\|r\|}{1-\beta}}\left(e^{\frac{\theta\|r\| \beta}{} N+1} 1-\beta \quad-1\right)
$$

Shapley equation

Q1: The property (P1) does not hold:

$$
\begin{aligned}
& \mathbb{E}_{p, x}^{\pi, \sigma}\left[e^{\theta \sum_{n=0}^{\infty} \beta^{n} r\left(\Lambda, X_{n}, A_{n}, B_{n}\right)} \mid X_{0}, A_{0}, B_{0}\right] \\
\not \equiv & e^{\theta r\left(\Lambda, X_{0}, A_{0}, B_{0}\right)} \mathbb{E}_{p, x}^{\pi, \sigma}\left[e^{\theta \sum_{n=1}^{\infty} \beta^{n} r\left(\Lambda, X_{n}, A_{n}, B_{n}\right)} \mid X_{0}, A_{0}, B_{0}\right]
\end{aligned}
$$

- Given any $(x, a, b) \in E \times A \times B$, define $\mathbb{H}^{x, a, b}$ from \mathcal{C} to \mathcal{C} as

$$
\begin{equation*}
\mathbb{H}^{x, a, b}(r)(\hat{k}, \hat{x}, \hat{a}, \hat{b}):=r(k, \hat{x}, \hat{a}, \hat{b})+\beta^{-1}(1-\beta) r(\hat{k}, x, a, b), \tag{3}
\end{equation*}
$$

for all $(\hat{k}, \hat{x}, \hat{a}, \hat{b}) \in K \times E \times A \times B . \mathbb{H}^{x, a, b}(r) \in \mathcal{C}$
Q2: How do players update the probability distribution p over K ?

- A mapping $Q: \mathcal{P}(A \mid K) \times A \times \mathcal{P}(K) \rightarrow \mathcal{P}(K)$ is defined as

$$
\begin{equation*}
Q_{k}(\mu, a, p):=\frac{\mu(a \mid k) p_{k}}{\sum_{l \in K} \mu(a \mid I) p_{l}} \tag{4}
\end{equation*}
$$

for all $\mu \in \mathcal{P}(A \mid K), a \in A, p \in \mathcal{P}(K), k \in K . Q(\mu, a, p) \in \mathcal{P}(K)$

Shapley equation

- For $(\mu, \nu) \in \mathcal{P}(A \mid K) \times \mathcal{P}(B)$, define an operator from \mathbb{M} to \mathbb{M} as

$$
\begin{aligned}
T^{\mu, \nu} u(\theta, r, p, x):= & \sum_{k, a, b, y} p_{k} \mu(a \mid k) \nu(b) q(y \mid x, a, b) \\
& \times u\left(\theta \beta, \mathbb{H}^{X, a, b}(r), Q(\mu, a, p), y\right)
\end{aligned}
$$

where \mathbb{M} denotes the set of all nonnegative real-valued functions u on $(0, \infty) \times \mathcal{C} \times \mathcal{P}(K) \times E$.

- Define an operator T from \mathbb{M} to \mathbb{M} by

$$
\begin{equation*}
T u:=\sup _{\mu \in \mathcal{P}(A \mid K)} \inf _{\nu \in \mathcal{P}(B)} T^{\mu, \nu} u, \quad u \in \mathbb{M} \tag{5}
\end{equation*}
$$

- Then, we derive a new Shapley equation $u=T u$.

The Shapley equation

Theorem 2

The value function V^{*} solves the Shapley equation, i.e.,

$$
V^{*}(\theta, r, p, x)=\sup _{\mu \in \mathcal{P}(A \mid K)} \inf _{\nu \in \mathcal{P}(B)} T^{\mu, \nu} V^{*}(\theta, r, p, x)
$$

for all $(\theta, r, p, x) \in(0, \infty) \times \mathcal{C} \times \mathcal{P}(K) \times E$.
Remark: the case of $K=\{k\}$.
Since $\mathcal{P}(K)=\{1\}$, we skip the third component of the value and obtain $V^{*}\left(\theta \beta, \mathbb{H}^{x, a, b}(r), y\right)=e^{\theta r(k, x, a, b)} V^{*}(\theta \beta, r, y)$. Hence, Theorem 2 gives

$$
V^{*}(\theta, r, x)=\sup _{\mu \in \mathcal{P}(A)} \inf _{\nu \in \mathcal{P}(B)} \sum_{a, b, y} \mu(a) \nu(b) q(y \mid x, a, b) e^{\theta r(k, x, a, b)} V^{*}(\theta \beta, r, y),
$$

which is consistent with the case of complete information.

Key points of proof:

- For $\pi=\left\{\pi_{n}^{(k)}, k \in K, n \geq 0\right\}$ and $\sigma=\left\{\sigma_{n}, n \geq 0\right\}$

$$
\begin{align*}
V(\theta, r, p, x, \pi, \sigma) & =\sum_{k \in K} \sum_{a \in A} \sum_{b \in B} p_{k} \pi_{0}^{(k)}(a \mid x) \sigma_{0}(b \mid x) \sum_{y \in E} q(y \mid x, a, b) \\
\cdot & V\left(\theta \beta, \mathbb{H}^{x, a, b}(r), Q\left(\pi_{0}(\cdot \mid x), a, p\right), y,^{(x, a, b)} \pi,^{(x, a, b)} \sigma\right) \tag{6}
\end{align*}
$$

where ${ }^{(x, a, b)} \pi=\left\{(x, a, b) \pi_{n}^{(k)}, k \in K, n \geq 0\right\}$ is defined by

$$
{ }^{(x, a, b)} \pi_{n}^{(k)}\left(\cdot \mid h_{n}\right)=\pi_{n+1}^{(k)}\left(\cdot \mid x, a, b, h_{n}\right), \quad k \in K, n \geq 0, h_{n} \in H_{n}
$$

${ }^{(x, a, b)} \sigma$, one-shift policy of σ, is similarly defined.

- At 1-th decision epoch, if the history $h_{1}=(x, a, b, y)$ is observed and the action a is chosen according to $\pi_{0}(\cdot \mid x)$, players can consider the problem as a new game $G\left(\theta \beta, \mathbb{H}^{x, a, b}(r), Q\left(\pi_{0}(\cdot \mid x), a, p\right)\right)$ with the initial state y.

Construct an optimal policy for player 1:

Theorem 2

$$
\begin{aligned}
V^{*}(\theta, r, p, x)= & \sup _{\mu \in \mathcal{P}(A \mid K)} \inf _{\nu \in \mathcal{P}(B)} T^{\mu, \nu} V^{*}(\theta, r, p, x) \\
= & \sup _{\mu \in \mathcal{P}(A \mid K)} \inf _{\nu \in \mathcal{P}(B)} \sum_{k, a, b, y} p_{k} \mu(a \mid k) \nu(b) q(y \mid x, a, b) \\
& \times V^{*}\left(\theta \beta, \mathbb{H}^{x, a, b}(r), Q(\mu, a, p), y\right)
\end{aligned}
$$

- An optimal policy $\pi^{*}=\left\{\pi_{n}^{*(k)}, k \in K, n \geq 0\right\}$ for player 1 in $G(\theta, r, p)$ should satisfy the following two characterizations:
(C1): $V^{*}(\theta, r, p, x)=\inf _{\nu \in \mathcal{P}(B)} T^{\pi_{0}^{*}(\cdot \mid x), \nu} V^{*}(\theta, r, p, x)$ for all $x \in E$;
(C2): The one-shift policy $\left(x_{0}, a_{0}, b_{0}\right) \pi^{*}$ is optimal in the new game

$$
G\left(\theta \beta, \mathbb{H}^{x_{0}, a_{0}, b_{0}}(r), Q\left(\pi_{0}^{*}\left(\cdot \mid x_{0}\right), a_{0}, p\right)\right) .
$$

Construct an optimal policy for player 1:

- For a given triple $(\theta, r, p) \in(0, \infty) \times \mathcal{C} \times \mathcal{P}(K)$, we recursively define

$$
\left\{\left(p^{*}\left[h_{n}\right], \pi_{n}^{*}\left(\cdot \mid h_{n}\right)\right) \in \mathcal{P}(K) \times \mathcal{P}(A \mid K), n \geq 0, h_{n} \in H_{n}\right\} .
$$

- For each $h_{0}=x_{0} \in H_{0}$ let $p^{*}\left[h_{0}\right]=p, r\left[h_{0}\right]:=r$ and

$$
\pi_{0}^{*}\left(\cdot \mid h_{0}\right)=\underset{\mu \in \mathcal{P}(A \mid K)}{\arg \max }\left\{\inf _{\nu \in \mathcal{P}(B)} T^{\mu, \nu} V^{*}\left(\theta, r\left[h_{0}\right], p^{*}\left[h_{0}\right], x_{0}\right)\right\} .
$$

- For $h_{n+1}=\left(x_{0}, a_{0}, b_{0}, \ldots, x_{n}, a_{n}, b_{n}, x_{n+1}\right)=\left(h_{n}, a_{n}, b_{n}, x_{n+1}\right) \in H_{n+1}$ let

$$
\begin{aligned}
& p^{*}\left[h_{n+1}\right]=Q\left(\pi_{n}^{*}\left(\cdot \mid h_{n}\right), a_{n}, p^{*}\left[h_{n}\right]\right), \quad r\left[h_{n+1}\right]=\mathbb{H}^{X_{n}, a_{n}, b_{n}}\left(r\left[h_{n}\right]\right) \\
& \pi_{n+1}^{*}\left(\cdot \mid h_{n+1}\right)=\underset{\mu \in \mathcal{P}(A \mid K)}{\arg \max }\left\{\inf _{\nu \in \mathcal{P}(B)} T^{\mu, \nu} V^{*}\left(\theta \beta^{n+1}, r\left[h_{n+1}\right], p^{*}\left[h_{n+1}\right], x_{n+1}\right)\right\} .
\end{aligned}
$$

An optimal policy for player 1

Theorem 3 (Optimal policy for player 1)
Let $\pi^{*}=\left\{\pi_{n}^{*(k)}, k \in K, n \geq 0\right\}$. The policy π^{*} is an optimal policy for player 1 in the game $G(\theta, r, p)$, i.e.,

$$
\inf _{\sigma \in \Pi_{2}} V\left(\theta, r, p, x, \pi^{*}, \sigma\right)=V^{*}(\theta, r, p, x) \quad \forall x \in E
$$

An optimal policy for player 2

- A natural idea for constructing an optimal policy σ^{*} for player 2 in $G(\theta, r, p)$ is via the Shapley equation.
- Corresponding to (C2), $\sigma^{*}=\left\{\sigma_{n}^{*}, n \geq 0\right\}$ should have the characteristic: the one-shift policy ${ }^{\left(x_{0}, a_{0}, b_{0}\right)} \sigma^{*}$ of σ^{*} is optimal in

$$
G\left(\theta \beta, \mathbb{H}^{x_{0}, a_{0}, b_{0}}(r), Q\left(\pi_{0}^{*}\left(\cdot \mid x_{0}\right), a_{0}, p\right)\right) .
$$

This implies that σ^{*} must depend on π^{*}.

- Any optimal policy for player 2 cannot depend on anyone for player 1 . We cannot obtain any optimal policy for player 2 by this idea.
© Construct an optimal policy for player 2 by introducing dual games.

Dual risk-sensitive games

A dual risk-sensitive game with incomplete reward information is defined as

$$
G^{\#}(\theta, r, z):=\{\theta, K, E, A, B, z, q(y \mid x, a, b), r(k, x, a, b)\}
$$

- where θ, K, E, A, B, q and r are the same as $G(\theta, r, p)$.
- The difference is that $p \in \mathcal{P}(K)$ in $G(\theta, r, p)$ is replaced by $z=\left\{z_{k}, k \in K\right\} \in \mathbb{R}_{+}^{|K|}$, which is used to modify the expected discounted risk-sensitive reward.

The evolution of the dual game $G^{\#}(\theta, r, z)$

- Initially, both players observe an initial state x_{0}. According to the initial state x_{0}, player 1 chooses a reward type $k \in K$, which dose not change and is hidden from player 2 in the subsequent evolution.
- The subsequent evolution of the dual game $G^{\#}(\theta, r, z)$ is the same as that of $G(\theta, r, p)$.
- Finally, player 1 receives the reward $\sum_{n=0}^{\infty} \beta^{n} r\left(k, x_{n}, a_{n}, b_{n}\right)-z_{k}$.

Definition 3

A policy $\pi^{\#}$ for player 1 in the dual game is given by a two-tuple (ξ, π) with $\xi \in \mathcal{P}(K \mid E)$ and $\pi \in \Pi_{1}$. Denote by $\Pi_{1}^{\# \#}$ the set of all policies for player 1 in the dual game.

The dual games

- For $\pi^{\#}=(\xi, \pi) \in \Pi_{1}^{\#}, \sigma \in \Pi_{2}$, and $x \in E$, the expected risk-sensitive reward for player 1 in $G^{\#}(\theta, r, z)$ is defined as

$$
\begin{equation*}
U\left(\theta, r, z, x, \pi^{\#}, \sigma\right)=\mathbb{E}_{x}^{\pi^{\#}, \sigma}\left[e^{\theta \sum_{n=0}^{\infty} \beta^{n} r\left(\wedge, X_{n}, A_{n}, B_{n}\right)}-z_{\Lambda}\right] \tag{7}
\end{equation*}
$$

- $\underline{U}(\theta, r, z, x):=\sup _{\pi \# \in \Pi_{1}^{\#}} \inf _{\sigma \in \Pi_{2}} U\left(\theta, r, z, x, \pi^{\#}, \sigma\right)$
- $\bar{U}(\theta, r, z, x):=\inf _{\sigma \in \Pi_{2}} \sup _{\pi^{\#} \in \Pi_{1}^{\#}} U\left(\theta, r, z, x, \pi^{\#}, \sigma\right)$
- Given (θ, r, z), if $\underline{U}(\theta, r, z, x)=\bar{U}(\theta, r, z, x)$ holds for all $x \in E$, the common function is called the value function of $G^{\#}(\theta, r, z)$ and is denoted by $U^{*}(\theta, r, z, x)$.

Definition 4

For $(\theta, r, z) \in(0, \infty) \times \mathcal{C} \times R_{+}^{|K|}$, a policy $\sigma^{*} \in \Pi_{2}$ is called optimal for player 2 in the dual game $G^{\#}(\theta, r, z)$ if

$$
\sup _{\pi^{\#} \in \Pi_{1}^{\#}} U\left(\theta, r, z, x, \pi^{\#}, \sigma^{*}\right)=\bar{U}(\theta, r, z, x) \quad \forall x \in E
$$

Two questions:
© Is there an optimal policy for player 2 in the dual game?
4 How to construct an optimal policy for player 2 in the primal game by that in the dual game?

Lemma 1

(a) The value function U^{*} of $G^{\#}(\theta, r, z)$ exists.
(b) $U^{*}(\theta, r, z, x)=\max _{p \in \mathcal{P}(K)}\left\{V^{*}(\theta, r, p, x)-\langle p, z\rangle\right\}$.
(c) $V^{*}(\theta, r, p, x)=\min _{z \in \mathbb{B}_{r}^{\theta}}\left\{U^{*}(\theta, r, z, x)+\langle p, z\rangle\right\}$ where

$$
\mathbb{B}_{r}^{\theta}=\left\{z=\left(z_{k}\right)_{k \in K} \in \mathbb{R}_{+}^{|K|} \left\lvert\, z_{k} \leq e^{\frac{\theta| | r| |}{1-\beta}}\right., k \in K\right\}
$$

is a compact subset of $\mathbb{R}_{+}^{|K|}$.
A Lemma 1 shows the relationship between primal games and dual games.

Proposition 1

Given any $(\theta, r, z) \in(0, \infty) \times \mathcal{C} \times R_{+}^{|K|}$, the value function U^{*} of the dual game $G^{*}(\theta, r, z)$ satisfies that for each $x \in E$

$$
\begin{equation*}
U^{*}(\theta, r, z, x)=\min _{\nu \in \mathcal{P}(B)} \min _{f \in \mathcal{C}_{r}^{\theta}} \max _{p \in \mathcal{P}(K)} \max _{\mu \in \mathcal{P}(A \mid K)} \Gamma_{f, p}^{\mu, \nu} U^{*}(\theta, r, z, x), \tag{8}
\end{equation*}
$$

where

$$
\mathcal{L}_{r}^{\theta}:=\left\{f: A \times B \times E \rightarrow \mathbb{R}_{+}^{|K|} \mid f(a, b, y) \in \mathbb{B}_{r}^{\theta} \forall(a, b, y) \in A \times B \times E\right\}
$$

and

$$
\begin{aligned}
\Gamma_{f, p}^{\mu, \nu} U^{*}(\theta, r, z, x):= & -\langle p, z\rangle+\sum_{k \in K} \sum_{a \in A} \sum_{b \in B} p_{k} \mu(a \mid k) \nu(b) \sum_{y \in E} q(y \mid x, a, b) \\
& \left(U^{*}\left(\theta \beta, \mathbb{H}^{x, a, b}(r), f(a, b, y), y\right)+\langle Q(\mu, a, p), f(a, b, y)\rangle\right) .
\end{aligned}
$$

Remark

From Proposition 1, given $h_{1}=(x, a, b, y)$, player 2 can view choosing an action at $(n+1)$-th decision epoch in the game $G^{\#}(\theta, r, z)$ as choosing an action at n-th decision epoch in a new game

$$
G^{\#}\left(\theta \beta, \mathbb{H}^{x, a, b}(r), f^{*}(a, b, y)\right)
$$

with an initial state y, where

$$
f^{*}=\underset{f \in \mathcal{L}_{r}^{\theta}}{\arg \min }\left\{\min _{\nu \in \mathcal{P}(B)} \max _{p \in \mathcal{P}(K)} \max _{\mu \in \mathcal{P}(A \mid K)} \Gamma_{f, p}^{\mu, \nu} U^{*}(\theta, r, z, x)\right\} .
$$

Note that

$$
\mathcal{L}_{r}^{\theta}:=\left\{f: A \times B \times E \rightarrow \mathbb{R}_{+}^{|K|} \mid f(a, b, y) \in \mathbb{B}_{r}^{\theta} \forall(a, b, y) \in A \times B \times E\right\}
$$

Given $(\theta, r, z) \in(0, \infty) \times \mathcal{C} \times R_{+}^{|K|}$, we define $\sigma_{z}^{*}=\left\{\sigma_{z, n}^{*}, n \geq 0\right\} \in \Pi_{2}$ (depending on (θ, r, z)) for player 2 as follows. For $h_{0}=x_{0} \in H_{0}$ let

$$
\begin{equation*}
\sigma_{z, 0}^{*}\left(\cdot \mid h_{0}\right):=\underset{\nu \in \mathcal{P}(B)}{\arg \min }\left\{\min _{f \in \mathcal{L}_{r}^{\theta}} \max _{p \in \mathcal{P}(K)} \max _{\mu \in \mathcal{P}(A \mid K)} \Gamma_{f, p}^{\mu, \nu} U^{*}\left(\theta, r, z, x_{0}\right)\right\}, \tag{9}
\end{equation*}
$$

and for $h_{n}=\left(h_{n-1}, a_{n-1}, b_{n-1}, x_{n}\right) \in H_{n}(n \geq 1)$ let

$$
\begin{align*}
\sigma_{z, n}^{*}\left(\cdot \mid h_{n}\right):= & \underset{\nu \in \mathcal{P}(B)}{\arg \min }\left\{\min _{f \in \mathcal{L}_{r[\mid h n]}^{\theta \beta^{n}}} \max _{p \in \mathcal{P}(K)} \max _{\mu \in \mathcal{P}(A \mid K)}\right. \\
& \left.\Gamma_{f, p}^{\mu, \nu} U^{*}\left(\theta \beta^{n}, r\left[h_{n}\right], f^{*}\left[h_{n-1}\right]\left(a_{n-1}, b_{n-1}, x_{n}\right), x_{n}\right)\right\}, \tag{10}
\end{align*}
$$

where $f^{*}\left[h_{0}\right]:=\underset{f \in \mathcal{L}_{r}^{\theta}}{\arg \min }\left\{\min _{\nu \in \mathcal{P}(B)} \max _{p \in \mathcal{P}(K)} \max _{\mu \in \mathcal{P}(A \mid K)} \Gamma_{f, p}^{\mu, \nu} U^{*}\left(\theta, r, z, x_{0}\right)\right\}$, and

$$
\begin{align*}
f^{*}\left[h_{n}\right]:= & \underset{f \in \mathcal{L}_{r\left[h_{n}\right]}^{\theta \beta^{n}}}{\arg \min }\left\{\min _{\nu \in \mathcal{P}(B)} \max _{p \in \mathcal{P}(K)} \max _{\mu \in \mathcal{P}(A \mid K)}\right. \\
& \left.\Gamma_{f, p}^{\mu, \nu} U^{*}\left(\theta \beta^{n}, r\left[h_{n}\right], f^{*}\left[h_{n-1}\right]\left(a_{n-1}, b_{n-1}, x_{n}\right), x_{n}\right)\right\} . \tag{11}
\end{align*}
$$

Theorem 4 (Optimal policy for player 2 in the dual game)

Given any $(\theta, r, z) \in(0, \infty) \times \mathcal{C} \times R_{+}^{|K|}$, the policy σ_{z}^{*} is an optimal policy for player 2 in the dual game $G^{\#}(\theta, r, z)$.

- For $(\theta, r, p) \in(0, \infty) \times \mathcal{C} \times \mathcal{P}(K)$, let

$$
z^{x}:=\underset{z \in \mathbb{B}_{r}^{\theta}}{\arg \min }\left\{U^{*}(\theta, r, z, x)+\langle p, z\rangle\right\}, \quad x \in E .
$$

Denote by $\sigma_{z^{x}}^{*}=\left\{\sigma_{z^{x}, n}^{*}, n \geq 0\right\}$ the optimal policy for player 2 in the dual game $G \#\left(\theta, r, z^{x}\right)$. Then, define $\sigma_{p}^{*}=\left\{\sigma_{p, n}^{*}, n \geq 0\right\}$ as

$$
\sigma_{p, n}^{*}\left(\cdot \mid h_{n}\right):=\sigma_{z^{x_{0}}, n}^{*}\left(\cdot \mid h_{n}\right), \quad h_{n}=\left(x_{0}, a_{0}, b_{0}, \ldots, x_{n}\right) \in H_{n} .
$$

Theorem 5 (Optimal policy for player 2 in the primal game)

The policy σ_{p}^{*} is an optimal policy for player 2 in $G(\theta, r, p)$.

An example

- $K=\{1,2\}, E=\left\{x_{1}, x_{2}, x_{3}\right\}, A=\left\{a_{1}, a_{2}\right\}, B=\left\{b_{1}, b_{2}\right\}$;
- $q\left(y \mid x_{3}, a_{2}, b\right):=\delta_{x_{2}}(y), \quad q\left(y \mid x_{3}, a_{1}, b\right):=\delta_{x_{1}}(y) \quad \forall b \in B, y \in E$;
- $q\left(y \mid x_{2}, a, b\right)=q\left(y \mid x_{1}, a, b\right):=\delta_{x_{1}}(y) \quad \forall a \in A, b \in B, y \in E$;
- $r\left(k, x_{1}, a, b\right)=1$ for all $k \in K, a \in A, b \in B$;
- for $x \in\left\{x_{2}, x_{3}\right\}$,

$$
\begin{aligned}
& r\left(1, x, a_{1}, b_{1}\right)=4, r\left(1, x, a_{1}, b_{2}\right)=0, \\
& r\left(1, x, a_{2}, b_{1}\right)=2, r\left(1, x, a_{2}, b_{2}\right)=2, \\
& r\left(2, x, a_{1}, b_{1}\right)=0, r\left(2, x, a_{1}, b_{2}\right)=4, \\
& r\left(2, x, a_{2}, b_{1}\right)=2, r\left(2, x, a_{2}, b_{2}\right)=2 .
\end{aligned}
$$

The value

For any $p=\left(p_{1}, p_{2}\right) \in \mathcal{P}(K)$: assume that $\left(e^{4 \theta}+1\right) e^{\theta \beta}-e^{2 \theta}\left(e^{4 \theta \beta}+1\right) \geq 0$

- $V^{*}\left(\theta, r, p, x_{1}\right)=e^{\frac{\theta}{1-\beta}}$;
- $V^{*}\left(\theta, r, p, x_{2}\right)= \begin{cases}\left(p_{1}\left(e^{4 \theta}+1\right)+\left(1-2 p_{1}\right) e^{2 \theta}\right) e^{\frac{\theta \beta}{1-\beta}}, & \text { if } p_{1} \leq \frac{1}{2}, \\ \left(p_{2}\left(e^{4 \theta}+1\right)+\left(1-2 p_{2}\right) e^{2 \theta}\right) e^{\frac{\theta \beta}{1-\beta}}, & \text { if } p_{1} \geq \frac{1}{2}\end{cases}$
- $V^{*}\left(\theta, r, p, x_{3}\right)= \begin{cases}p_{1}\left(e^{4 \theta}+1\right) e^{\frac{\theta \beta}{1-\beta}}+\left(1-2 p_{1}\right) e^{2 \theta+2 \theta \beta+\frac{\theta \beta^{2}}{1-\beta}}, & \text { if } p_{1} \leq \frac{1}{2}, \\ p_{2}\left(e^{4 \theta}+1\right) e^{\frac{\theta \beta}{1-\beta}}+\left(1-2 p_{2}\right) e^{2 \theta+2 \theta \beta+\frac{\theta \beta^{2}}{1-\beta}}, & \text { if } p_{1} \geq \frac{1}{2}\end{cases}$

Optimal policy for player 1

- $\pi_{p, 0}^{*(k)}\left(a \mid x_{1}\right)=\delta_{a_{2}}(a), \pi_{p, 0}^{*(k)}\left(a \mid x_{3}\right)=\pi_{p, 0}^{*(k)}\left(a \mid x_{2}\right)$, where

$$
\pi_{p, 0}^{*(k)}\left(a \mid x_{2}\right)= \begin{cases}\delta_{1}(k) \delta_{a_{1}}(a)+\frac{p_{1}}{p_{2}} \delta_{2}(k) \delta_{a_{1}}(a)+\left(1-\frac{p_{1}}{p_{2}}\right) \delta_{2}(k) \delta_{a_{2}}(a), & \text { if } p_{1} \leq \frac{1}{2} \\ \frac{p_{2}}{p_{1}} \delta_{1}(k) \delta_{a_{1}}(a)+\left(1-\frac{p_{2}}{p_{1}}\right) \delta_{1}(k) \delta_{a_{2}}(a)+\delta_{2}(k) \delta_{a_{1}}(a), & \text { if } p_{1} \geq \frac{1}{2}\end{cases}
$$

- $\pi_{p, 1}^{*(k)}\left(\cdot \mid x_{3}, a_{2}, b_{2}, x_{2}\right)=\pi_{p, 1}^{*(k)}\left(\cdot \mid x_{3}, a_{2}, b_{1}, x_{2}\right)$, where

$$
\pi_{p, 1}^{*(k)}\left(\cdot \mid x_{3}, a_{2}, b_{1}, x_{2}\right)= \begin{cases}\delta_{1}(k) \delta_{a_{1}}(\cdot)+\delta_{2}(k) \delta_{a_{2}}(\cdot), & \text { if } p_{1} \leq \frac{1}{2} \\ \delta_{1}(k) \delta_{a_{2}}(\cdot)+\delta_{2}(k) \delta_{a_{1}}(\cdot), & \text { if } p_{1} \geq \frac{1}{2}\end{cases}
$$

- $h_{1} \in H_{1} \backslash\left\{\left(x_{3}, a_{2}, b_{1}, x_{2}\right),\left(x_{3}, a_{2}, b_{2}, x_{2}\right)\right\}, h_{n} \in H_{n}(n \geq 2)$,

$$
\pi_{p, 1}^{*(k)}\left(a \mid h_{1}\right)=\pi_{p, n}^{*(k)}\left(a \mid h_{n}\right):=\delta_{a_{2}}(a)
$$

Optimal policy for player 2 in $G(\theta, r, p)$ with $p_{1} \geq \frac{1}{2}$

$\sigma^{*}=\left\{\sigma_{n}, n \geq 0\right\}$ as follows: for any $b \in B$

$$
\begin{aligned}
& \sigma_{0}^{*}\left(b \mid x_{2}\right)=\delta_{b_{1}}(b) \frac{e^{2 \theta}-1}{e^{4 \theta}-1}+\delta_{b_{2}}(b) \frac{e^{4 \theta}-e^{2 \theta}}{e^{4 \theta}-1}, \\
& \sigma_{0}^{*}\left(b \mid x_{3}\right)=\delta_{b_{1}}(b) \frac{\left(e^{2 \theta+\theta \beta}-1\right)}{e^{4 \theta}-1}+\delta_{b_{2}}(b) \frac{\left(e^{4 \theta}-e^{2 \theta+\theta \beta}\right)}{e^{4 \theta}-1}, \\
& \sigma_{1}^{*}\left(b \mid x_{3}, a_{2}, b_{1}, x_{2}\right)=\sigma_{1}^{*}\left(b \mid x_{3}, a_{2}, b_{2}, x_{2}\right)=\delta_{b_{1}}(b) \frac{e^{2 \theta \beta}-1}{e^{4 \theta \beta}-1}+\delta_{b_{2}}(b) \frac{e^{4 \theta \beta}-e^{2 \theta \beta}}{e^{4 \theta \beta}-1},
\end{aligned}
$$

and for $h_{1} \in H_{1} \backslash\left\{\left(x_{3}, a_{2}, b_{1}, x_{2}\right),\left(x_{3}, a_{2}, b_{2}, x_{2}\right)\right\}$ and $h_{n} \in H_{n}(n \geq 2)$,

$$
\sigma_{0}^{*}\left(b \mid x_{1}\right)=\sigma_{1}^{*}\left(b \mid h_{1}\right)=\sigma_{n}^{*}\left(b \mid h_{n}\right):=\delta_{b_{2}}(b) .
$$

Combining the data of this example, Theorems 4 and 5 , we have that σ^{*} is optimal for player 2 in the game $G(\theta, r, p)$ with $p_{1} \geq \frac{1}{2}$.

Thanks!

